
PYDACTYL: A PYTHON FRAMEWORK FOR PIANO FINGERING

David A. Randolph1 Justin Badgerow2 Christopher Raphael3 Barbara Di Eugenio1

1 University of Illinois at Chicago 2 Elizabethtown College 3 Indiana University Bloomington
drando2@uic.edu

ABSTRACT

A Python framework, “Pydactyl,” supporting the rapid de-
velopment of piano fingering models, is described and
demonstrated. Leveraging the popular music21 toolkit,
this object-oriented framework standardizes problem de-
composition, data formats, fingering segment combination,
and evaluation methods, while supporting automated and
manual phrase segmentation. Reference implementations
of three published models are included.

1. OVERVIEW

While pianists often value the fingering advice in editorial
scores, the majority of piano music includes no such guid-
ance. Even when present, the static advice in paper scores
frequently proves ill-suited to the individual pianist. Thus,
especially in light of the volume of freely available reper-
toire available online, the time is ripe for computer models
that automatically generate piano fingering advice.

Toward this end, we introduce Pydactyl, an object-
oriented Python 3 framework to accelerate development
of computational piano fingering models and to encourage
the consistent evaluation thereof. The framework includes
ready-to-use implementations to address the basic needs
of developers working in the domain. Common tasks like
standardized data formatting, input processing, database
connectivity, phrase segmentation, model evaluation, and
system baselining are addressed, enabling researchers to
focus on the specifics of their models.

Hosted at https://github.com/dvdrndlph/
pydactyl, Pydactyl is open-source. To install, type this:

pip3 install pydactyl

2. FOCUS ON SEGMENTATION

Radicioni et al. [7] make a convincing case that segmented
(localized) fingering solutions lead to improved global so-
lutions. Citing [3, 5, 10], they argue “expressive aspects
of performance descend from the performer’s analysis of”

c© David A. Randolph, Justin Badgerow, Christopher
Raphael, and Barbara Di Eugenio. Licensed under a Creative Commons
Attribution 4.0 International License (CC BY 4.0). Attribution: David
A. Randolph, Justin Badgerow, Christopher Raphael, and Barbara Di Eu-
genio. “Pydactyl: A Python Framework for Piano Fingering”, 19th In-
ternational Society for Music Information Retrieval Conference, Paris,
France, 2018.

structure, especially phrases (in the colloquial sense of seg-
menting a piece into musical ideas), and that fingering is
one such aspect. We therefore support phrase segmenta-
tion in our base “Dactyler” class, from which all models
implemented in the framework derive. To enable derived
classes to focus solely on generating advice for individual
phrases, the base class also provides methods for combin-
ing segmented advice into a ranked list of global solutions.

Since we leverage the music21 toolkit [2] to build our
framework, Pydactyl will ultimately accept all input for-
mats supported by music21. But current testing has fo-
cused on abc notation [11] and specifically on our own
abcD [8], now expanded to support phrase segmentation
(via commas, semicolons, and periods) in its abcDF fin-
gering specifications.

Including phrase segmentation as a component of our
fingering specification is not done without reservations. On
the one hand, phrasing is clearly an input into the finger-
ing problem and does not constitute an essential part of an
output fingering solution. Indeed, varying notions of how
music should be phrased likely contribute to variability in
fingering decisions, and this contributes to the difficulty in
solving the problem in a generalized way.

But as a practical matter, phrasing suggestions are ex-
ceedingly rare, even in editorial scores. Worse, in virtually
all piano notation, the same symbol is used ambiguously to
represent a phrase or a slur. We therefore elect to include
phrasing annotation in our fingering language to make it
easy to capture such data, especially from abcDE [8] users.

Clearly, phrasing is a matter of interpretation, and fin-
gering decisions are made in support of executing phrases.
So coupling fingering and phrasing data together is in an
important sense justified. In addition, when MIDI and
other input file formats are fully supported in our tool
chain, we can use accompanying abcD header files to con-
vey both detailed fingering and detailed segmentation in-
formation. We note that an annotation with only segmenta-
tion data still constitutes valid abcDF. Because the 2.1 abc
standard [11] provides unique notations for three levels of
phrase segmentation, we offer the same here.

As it turns out, combining fingered segments reduces to
a k-shortest path search problem, where the arc costs are
simply the costs associated with each suggested segment
fingering. How these segment fingering costs are calcu-
lated affects the rankings of the complete end-to-end sug-
gestions. The simplest method is perhaps the truest: The
cost of the entire sequence is simply the sum of the individ-
ual segment costs. However, this will make the most diffi-

https://github.com/dvdrndlph/pydactyl
https://github.com/dvdrndlph/pydactyl

cult and longest segment fingerings the most consistent in
any returned solutions. Moreover, these are likely to be the
very segments for which a user would appreciate a variety
suggestions. These would also likely be the segments that
would have the least agreement among pianists. Given this,
it might be preferred in some applications to normalize the
cost by the number of notes in the segment or even to focus
on the ordinal rank of segment suggestions, to ensure we
see similar variability for each segment. These three global
costing approaches are supported in Pydactyl.

3. EVALUATION METHODS

The framework also supports a set of evaluation metrics
to compare model output to gold-standard corpora. These
include three edit-distance metrics: a standard Hamming
distance; a more “natural” weighted measure that penal-
izes each individual finger deviation by the absolute dif-
ference in the expected and actual fingering numbers; and
another measure that infers hand re-positioning from devi-
ations involving the thumb and penalizes these differences
more severely. We also provide a straightforward pivot-
alignment measure along with one final method that re-
quires multiple requests for advice to assess.

This last “re-entry cost” method first checks the align-
ment of two fingering sequences. At the first deviation
detected, it imposes an edit-distance cost and re-generates
advice on the subsequence of notes from the point of devi-
ation, constraining the fingering on the first note to match
the gold standard. This process repeats, with costs aggre-
gating, until all notes are processed. To allow such oper-
ations, the framework requires all models to support con-
straining the first and last fingerings for any segment.

model = Parncutt(segmenter=ManualDSegmenter(),
segment_combiner="cost")
d_corpus = DCorpus(paths=["/tmp/prelude02.abcd"])
model.load_corpus(d_corpus=d_corpus)
advice = model.advise()
Gold-standard embedded in input file.
hamming_dists = model.evaluate_strike_distance()

Listing 1: Pydactyl usage example.

Created by Dmitry Baranovskiy
from the Noun Project

 1 2 3 4 5 6 7 8 9 10 1110 12 13 14 15 16 17 18

(a) “Natural.”
Created by Dmitry Baranovskiy
from the Noun Project

 1 2 3 4 5 6 7 8 9 10 1110 12 13 14 15 16 17 18

Created by Dmitry Baranovskiy
from the Noun Project

(b) Re-position penalizing.

Figure 1: Alternative edit-distance measures provided by
Pydactyl. The distance between any two fingers on a ruler
is assessed each time a deviation is detected when com-
paring one suggested fingering with another. Credit: Hand by

Baranovskiy [1].

4. REFERENCE IMPLEMENTATIONS

We provide slightly enhanced implementations of the mod-
els by Parncutt et al. [6], Sayegh [9], and Hart et al. [4] for
baseline reference and to demonstrate Pydactyl usage.

5. ACKNOWLEDGMENTS

This work has been supported by a Provost’s Award from
UIC and a Faculty Grant from Elizabethtown College.

6. REFERENCES

[1] Dmitry Baranovskiy. Hand. https://
thenounproject.com/search/?q=
creator=9767&i=5011. Copyright informa-
tion: CC-BY 3.0 license. Accessed: 2017-04-25.

[2] Michael Scott Cuthbert and Christopher Ariza. mu-
sic21: A toolkit for computer-aided musicology and
symbolic music data. In Proceedings of the 11th Inter-
national Society for Music Information Retrieval Con-
ference, pages 637–642, Utrecht, Netherlands, 2010.

[3] Carolyn Drake and Caroline Palmer. Skill acquisition
in music performance: Relations between planning and
temporal control. Cognition, 74(1):1–32, 2000.

[4] Melanie Hart, Robert Bosch, and Elbert Tsai. Find-
ing Optimal Piano Fingerings. The UMAP Journal,
21(2):167–177, 2000.

[5] Caroline Palmer. Music performance. Annual Review
of Psychology, 48:115–138, 1997.

[6] Richard Parncutt, John A. Sloboda, Eric F. Clarke,
Matti Raekallio, and Peter Desain. An ergonomic
model of keyboard fingering for melodic fragments.
Music Perception, 14(4):341–382, 1997.

[7] Daniele Radicioni, Luca Anselma, and Vincenzo Lom-
bardo. A segmentation-based prototype to compute
string instruments fingering. In Proceedings of the
1st Conference on Interdisciplinary Musicology, Graz,
Austria, 2004.

[8] David A. Randolph and Barbara Di Eugenio. Easy as
abcDE: Piano fingering transcription online. In Ex-
tended Abstracts for the Late-Breaking Demo Session
of the 17th International Society for Music Information
Retrieval Conference, 2016.

[9] Samir I. Sayegh. Fingering for string instruments with
the optimum path paradigm. Computer Music Journal,
13(3):76–84, 1989.

[10] John Sloboda. The Musical Mind: The Cognitive Psy-
chology of Music. Oxford University Press, Oxford,
UK, 1985.

[11] Chris Walshaw. The abc Music Standard 2.1.
http://abcnotation.com/wiki/abc:
standard:v2.1, 2011. Accessed: 2016-06-28.

https://thenounproject.com/search/?q=creator=9767&i=5011
https://thenounproject.com/search/?q=creator=9767&i=5011
https://thenounproject.com/search/?q=creator=9767&i=5011
http://abcnotation.com/wiki/abc:standard:v2.1
http://abcnotation.com/wiki/abc:standard:v2.1

