
Worked Out Examples
in Computer Science Tutoring

Barbara Di Eugenio1, Lin Chen1, Nick Green1,
Davide Fossati2, and Omar AlZoubi2

1 Computer Science, University of Illinois at Chicago
Chicago, IL, USA

bdieugen/lchen43/ngreen21@uic.edu
2 Computer Science, Carnegie Mellon University in Qatar

Doha, Qatar
dfossati/oalzoubi@cmu.edu

Abstract. We annotated and analyzed Worked Out Examples (WOEs)
in a corpus of tutoring dialogues on Computer Science data structures.
We found that some dialogue moves that occur within WOEs, or se-
quences thereof, correlate with learning. Features of WOEs such as
length also correlate with learning for some data structures. These re-
sults will be used to augment the tutorial tactics available to iList, an
ITS that helps student learn linked lists.

Keywords: Tutoring dialogues, Tutoring strategies, Intelligent tutoring

1 Introduction

Worked out examples (WOEs) demonstrate a step by step solution of a prob-
lem for the learner to study. Learning from WOEs has been studied in cognitive
research [1, 2], including in the context of Intelligent Tutoring Systems (ITSs) [3,
4]. However, the conditions that trigger WOEs and how tutors structure WOEs
have not been extensively investigated. Our domain of interest is introductory
data structures in Computer Science (CS). Interestingly, one of the first pa-
pers on WOEs [7] also concerns learning in CS, specifically recursion in LISP
programming. Within CS, [5, 6] have employed WOEs for classroom instruction.

Our interest in exploring WOEs is two-fold. We believe that in order to
deploy WOEs in an ITS, it is essential to uncover the conditions under which
WOEs are effective. Additionally, in our previous work, we showed that certain
Dialogue Moves (DMs) on the part of the tutor, or sequences thereof, correlate
with learning gains [8]. Many of those findings have been implemented in the iList
system, that helps students learn linked lists [9, 10]. Still, the tutor interventions
we deployed are not conditioned on the larger tutoring strategies the tutor uses.
WOEs can provide one type of context to structure those tutor moves.



2 Worked Out Examples in CS Tutoring

2 WOEs, their features and learning

Our corpus consists of 54 tutoring sessions with two human tutors on linked lists,
stacks, and binary search trees. It had been previously annotated with Student
Initiative (SI), and with 5 tutor moves: prompts (PT); positive and negative
feedback (PF, NF); Direct Procedural Instruction (DPI) – the tutor provides
insight into steps to solve the problem; Direct Declarative Instruction (DDI)
– the tutor states facts about the problem [8]. The annotation of WOEs was
superimposed on these preexisting annotations. Two coders marked beginning
and end of WOEs.3 We obtained excellent intercoder agreement (κ = .82) on
7 sessions that were double annotated. Each coder then annotated half of the
remaining sessions. Fig. 1 shows a WOE excerpt from our corpus starting at
TUT2 (it continues beyond TUT6, and it has been modified for space reasons).
Fig. 1 also shows the moves each utterance is labelled with.

DDI TUT1 Now a binary search tree must remain ordered.

DPI, WOE-START TUT2 say we want to insert, um, six.

SI ST down there? [pointing to tree drawing]

PF TUT4 right

SI ST five is smaller than six

DDI TUT5 and the right child of five is null

DPI TUT6 so we will insert six to its right

Fig. 1. A worked out example to insert a node into a binary search tree

Table 1 shows distributional statistics about WOEs, per topic: how many
sessions (tutors were free to skip topics), and total number of WOEs; average
number of WOEs, average lengths of WOEs in words and in utterances (standard
deviations in parenthesis). Tutors use many more WOEs for lists and trees than
for stacks; more frequent WOEs for trees are offset by longer WOEs for lists.

Topic N Total WOEs Avg. WOEs Avg. Words/WOE Avg. Utts./WOE

Lists 52 180 3.5 (1.4) 498.3 (438) 48.3 (42.7)

Stacks 46 24 0.5 (0.5) 615.5 (115.6) 68.5 (17.1)

Trees 53 454 8.6 (2.7) 212.5 (223) 24.0 (24.5)
Table 1. Worked Out Examples Statistics

As in our previous work, we adopt a multiple regression approach, because
it shows how much variation in learning gains is explained by the variation of
features in the data. We previously included pre-test score, the length of the

3 Coders also marked nested WOEs, but since only 21 nested WOEs exist out of 658
total, we will not discuss them further.



Worked Out Examples in CS Tutoring 3

tutoring sessions, the DMs we annotated for, and DM bigrams and trigrams, i.e.
DM sequences of length 2 or 3. In our best regression models (R2=.415 for lists,
R2=.416 for stacks, and R2=.732 for trees), significant features are pre-test score
and trigrams of specific DMs (negative correlations between previous knowledge
and learning gains are common: models that only include pre-test score result
in R2=.200 for lists, R2=.296 for stacks, and an astounding R2=.676 for trees).

We now add WOEs and their features to the regression. Simply adding the
number of WOEs per session does not correlate with learning gains, other than
for stacks; however, this correlation is negative. Next, we explore models where
we differentiate between DMs within and outside of WOEs. We ran every regres-
sion model that results from the systematic combination of pre-score, length of
dialogue, number of WOEs, length of WOEs in words and utterances, and then,
for each DM, how many occur outside, and how many inside, a WOE. As a result,
we obtain better regression models, but only for lists and stacks (see Table 2).
Even if some correlations are only marginally significant, together they throw
further light on WOEs. For trees, the best previous model includes pre-test and
the DM trigram [PF,SI,DDI]. Using only the occurrences of this trigram of DMs
within WOEs (as in Fig. 1), we obtain a slightly improved R2 = .737.

Topic Predictor β R2 P

Lists
Pre-test −0.442

.485
<.01

WOE Prompt −.0006 = 0.073
WOE #Utterances .002 = 0.092
PF .005 = 0.099

Stacks
Pre-test −.37

.606
<.005

WOE PF 0.077 < .005
WOE Prompt −.021 <.05

Trees
Pre-test −.736

.737
<.0001

WOE [PF,SI,DDI] .037 < .005

Table 2. The most explanatory models include WOE features

From the models shown in Table 2, we can confirm that WOEs can be a suc-
cessful tutorial strategy, but we need to look “under the hood”. First, effective
features of WOEs depend on the specific topic; e.g., longer WOEs are effective
only for lists. Positive feedback (PF) within and outside WOEs is important: PFs
within WOEs marginally correlate with learning gains for stacks, and robustly
correlate with learning as part of the sequence [PF,SI,DDI] for trees; PFs out-
side of WOEs correlate with learning gains for lists (this confirms our previous
results on positive feedback). Surprisingly, for lists and stacks, prompts within
WOEs are negatively correlated with learning gains. This seems to suggest
that during WOEs, where the tutor is demonstrating a solution, students should
not be invited to participate in problem solving, which is otherwise well known
as conducive to learning. It turns out that, on average, more prompts occur in
WOEs for stacks (11.1), than for lists (7.7), than for trees (3.3). This may in
part be due to the respective difficulty of these data structures, with stacks being



4 Worked Out Examples in CS Tutoring

easiest, next lists, and then trees. This may also explain the negative correlation
between number of WOEs and learning gains, for stacks.

3 Future work

Our findings open various lines of inquiry for future work, such as, what the role
of prompts within WOEs is. We also intend to analyze the internal structure of
WOEs, and what may trigger a WOE. A preliminary analysis shows that DDIs
are the most frequent DM that immediately precedes the start of a WOE (see
TUT1 in Fig. 1) with 435 occurrences out of 658 (66%); in 113 cases (17%) the
preceding DM is a DPI. This seems to suggest that most of the time the tutor
sets the stage for a WOE with a DDI. We will integrate our findings within
the probabilistic model that iList uses to generate its next move. This model is
based on the “promise” of the current and previous student steps [10].

Acknowledgments. This work is supported by award NPRP 5-939-1-155 from
the Qatar National Research Fund.

References

1. Sweller, J.: The worked example effect and human cognition. Learning and In-
struction 16(2) (2006) 165–169

2. Atkinson, R.K., Derry, S.J., Renkl, A., Wortham, D.: Learning from examples:
Instructional principles from the worked examples research. Review of Educational
Research 70(2) (2000) 181–214

3. Renkl, A., Atkinson, R., Maier, U., Staley, R.: From example study to problem
solving: Smooth transitions help learning. Journal of Experimental Education 70
(2002) 293–315

4. Ringenberg, M., VanLehn, K.: Scaffolding problem solving with annotated, worked-
out examples to promote deep learning. In: ITS 2006, the 8th International Con-
ference on Intelligent Tutoring Systems. (2006) 625–634

5. Moura, I.C.: Worked-out examples in a computer science introductory module. In:
Proceedings of the World Congress on Engineering, Vol II. (2012)

6. Luukkainen, M., Vihavainen, A., Vikberg, T.: A software craftsman’s approach
to data structures. In: Proceedings of the 43rd ACM Technical Symposium on
Computer Science Education. SIGCSE ’12 (2012) 439–444

7. Pirolli, P., Anderson, J.R.: The role of learning from examples in the acquisition
of recursive programming skills. Canadian Journal of Psychology 39(2) (1985)

8. Chen, L., Di Eugenio, B., Fossati, D., Ohlsson, S., Cosejo, D.: Exploring Effective
Dialogue Act Sequences in One-on-one Computer Science Tutoring Dialogues. In:
BEA6, The 6th Workshop on Innovative Use of NLP for Building Educational
Applications. (2011)

9. Fossati, D., Di Eugenio, B., Brown, C., Ohlsson, S., Cosejo, D., Chen, L.: Support-
ing Computer Science curriculum: Exploring and learning linked lists with iList.
IEEE Transactions on Learning Technologies 2(2) (2009) 107–120

10. Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, C., Chen, L.: Generating proactive
feedback to help students stay on track. In: ITS 2010, 10th International Conference
on Intelligent Tutoring Systems. (2010)


