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Abstract

In this paper, we report on our approach to adding
Natural Language Generation (NLG) capabilities
to ITSs. Our choice has been to apply simple NLG
techniques to improve the feedback provided by
an existing ITS, specifically, one built within the
DIAG framework (Towne 1997a). We evaluated
the original version of the system and the enhanced
one with a between subjects experiment. On the
whole, the enhanced system is better than the orig-
inal one, other than in helping subjects remember
the actions they took. Current work includes ex-
ploiting more sophisticated NLG techniques but
still without delving into full fledged text planning.
We are also conducting a constrained data collec-
tion, in which students and tutors interact via the
ITS. The system presents the human tutor with the
facts the ITS deems relevant to answer the stu-
dent’s question, and the tutor uses them as appro-
priate in the answer.

Introduction
Today, many projects aim at providing ITSs with a full-
fledged dialogue interface, e.g. see the work at the CIR-
CLE1 center (http://www.pitt.edu/˜circle/), or (Hume
et al. 1996; Moore, Lemaire, & Rosenbloom 1996;
Rosé, Di Eugenio, & Moore 1999; Freedman 1999;
Graesseret al. 2000). On the contrary, our approach
to adding NLG capabilities to an Intelligent Tutoring
System falls on the weak side of the divide: we are
concentrating on simple sentence planning with no or
minimal amounts of text planning. Our choice is partly
a development strategy, because we set out to rapidly
improve the language feedback provided by an existing
ITS shell, partly a desire to evaluate how effective the
system can be with a relatively small effort. The results
so far are that simple NLG can help, but the gains are

1Center for Interdisciplinary Research on Constructive
Learning Environments.

small enough to suggest that moving to somewhat more
sophisticated techniques should be beneficial, even if
we still don’t intend to develop a full fledged NLG in-
terface.

We take this approach for two reasons. First, we want
to understand what can be accomplished by interfacing
an NL generator to an ITS taken as a blackbox: can the
ITS tutoring strategy be left as is, or is there a point in
which the dialogue strategies and the original tutoring
strategy are at odds with each other? Second, we are
interested in finding out what is the “added value” of an
NL interface to an ITS. One way to do so is to compare
a system that does not use NL techniques to a version of
the same system that uses NL. We are aware of only one
other experiment in this direction, described in (Trafton
et al. 1997). However, the system they describe (navi-
gation in a geographical map) does not seem to qualify
as a real ITS.

A similar approach — using simple generation tech-
niques for surface realization in tutoring dialogues —
is taken in YAG (McRoy, Channarukul, & Ali 2000).
According to McRoy et al., using templates, as op-
posed to e.g. unification with a grammar, provides a
fast mechanism for surface generation. However, we
believe their system has not been evaluated yet. In
general, the evaluation of NL interfaces to ITSs is an
area that needs investigation. ITSs are often evaluated
in terms of pre/post-test score, however other measures
such as some of the metrics we will discuss later (such
as task performance measures) may be appropriate as
well. To our knowledge, the only ITSs with an NL in-
terface which has been formally evaluated is CIRCSIM
(Evenset al. 1993; Kim, Glass, & Evens 2000), but the
results of the evaluation are not available yet.

We will first discuss DIAG, the ITS authoring shell
we are using. We will then discuss the work we have
completed; this comprises the aggregation rules we im-
plemented within EXEMPLARS and the formal evalu-
ation we conducted. We will then discuss some current
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work on generating more coherent feedback by exploit-
ing more sophisticated NLG techniques, and the data
collection we have started, to study how tutors verbal-
ize the information that the ITS wants to communicate.

DIAG
DIAG (Towne 1997a; 1997b) is a shell to build ITSs
that teach students to troubleshoot complex artifacts and
systems, such home heating and circuitry. DIAG in turn
builds on the VIVIDS authoring environment (Munro
1994). VIVIDS based tutors deliver instruction and
practice in the context of graphical simulations. Au-
thors build interactive graphical models of complex sys-
tems, and build lessons based on these graphical mod-
els.

A typical session with a DIAG application presents
the student with a series of troubleshooting problems of
increasing difficulty. DIAG’s tutoring strategy steers the
student towards performing the tests that have the great-
est potential for reducing uncertainty (Towne 1997a).
Most of the times, a test consists of the visual obser-
vation of anindicator. DIAG keeps track of the tests
the student performs, and the inferences that could be
made from the symptoms shown. The student interacts
with the application by testing indicators and trying to
infer which faulty part (RU) may cause the detected ab-
normal states. RU stands forreplaceable unit, because
the only course of action open to the student to fix the
problem is to replace faulty components in the graphical
simulation. Figure 1 shows one of the graphical views
in a DIAG application that teaches how to troubleshoot
a home heating system. The subsystem being displayed
is the furnace system. Some of its components are in-
dicators (e.g., the gauges labeled Burner Motor RPM
and Water Temperature). Others are either replaceable
units, or other complex modules that contain indicators
and replaceable units, e.g. the Oil Burner. Complex
components are in turn zoomable, i.e., if the user clicks
on them a new view that reveals their inner components
is shown.

At any point, the student can consult the built-in tutor
in one of several ways. For example, if the student sus-
pects an RU to be faulty, s/he can ask the tutor to specify
the likelihood that this part is the cause of the fault. The
tutor will also indicate the state of any indicators that
the student has explored and try to imply a correlation,
positive or negative, between the states of the indicators
to the RU in question. By utilizing the tutor’s feedback,
the student can deduce relationships among the system
parts and continually refine his/her solution.

Language Generation in DIAG
After deciding which content to communicate, the orig-
inal DIAG system (DIAG-orig) uses very simple tem-
plates to assemble the text to present to the student.

The result is that the feedback that DIAG provides is
repetitive, both as a sequence of replies to requests for
feedback, and within each verbal feedback. In many
cases, the feedback presents a single long list of many
parts. This problem is compounded by the fact that most
DIAG applications involve complex systems with many
parts. Although there are different levels of description
in the system model, and hierarchies of objects, the ver-
bal feedback is almost always in terms of individual in-
dicators or units. The top part of Figure 2 shows the
reply originally provided by DIAG to a request of infor-
mation regarding the indicator named “Visual Combus-
tion Check”.

We set out to improve on DIAG’s feedback mech-
anism by applying aggregation rules. For example, a
long list of parts can be broken down by classifying
each of these parts in to one of several smaller lists and
then presenting the student with this set of lists.

The bottom part of Figure 2 shows our aggregation
rules at work. The revised output groups the parts under
discussion by the system modules that contain them (Oil
Burner and Furnace System), and by the likelihood that
a certain RU causes the observed symptoms. Notice
how theIgnitor Assemblyis singled out in the revised
answer. Among all mentioned units, it is the only one
that cannot cause the symptom. This fact is just lost in
the original answer.

As our sentence planner, we chose EXEMPLARS
(White & Caldwell 1998) over better known systems
such as FUF (Elhadad 1993) and Penman (Bateman
1994) because of the complexity and learning curve
of the latter two. Efficiency and rapid prototyping are
among the reasons we chose EXEMPLARS.

EXEMPLARS is an object-oriented, rule based gen-
erator. The rules (calledexemplars) are similar to
schema-like text planning rules because they are meant
to capture an exemplary way of achieving a commu-
nicative goal in a given communicative context, as de-
termined by the system designer. EXEMPLARS is a
hybrid system that mixes template-style and more so-
phisticated types of text planning. The text planner se-
lects rules by traversing the exemplar specialization hi-
erarchy. The applicability conditions associated with
each exemplar are successively evaluated in order to
find the most specific exemplar for the current context.

In the enhanced version of the system (DIAG-NLP),
DIAG passes the information to be communicated to
EXEMPLARS (the two systems communicate via a text
file). Based on the message sent by DIAG, EXEM-
PLARS performs essentially three tasks:

1. it determines the specific exemplars needed;

2. it adds the chosen exemplars to the sentence planner
as a goal;

3. it linearizes and lexicalizes the feedback in its final
form, writing it to an external file which is passed
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Figure 1: A screen from a DIAG application on home heating

back to DIAG for display in the appropriate window.
In DIAG-NLP, we concentrated on rules for aggre-

gation, some of which also affect format and layout.
Our choices were suggested by the need to relate the
language feedback to the hierarchical structure of the
physical system. We have two main kinds of rules, de-
scription rules and aggregation rules.

Description rules are used when the full description
of a part is required, such as whether the part is in a
normal state, its current reading, and, if abnormal, what
the normal state should be (see the first sentence in the
bottom part of Figure 2).

The aggregation rules are used to group large lists
of parts into smaller lists. They allow composite ag-
gregation, so that nested lists are created. Among our
aggregation exemplars are:
� AggByContainer: each part within this DIAG appli-

cation is contained within a larger block, called a sys-
tem module. TheAggByContainerrule accepts a list
of parts, classifies each part by its containing module,
and then creates a set of lists by module;

� AggByFufer: it groups replaceable units according to
the likelihood of being at fault for a specific symp-
tom;

� AggByState: it groups indicators by their normal / ab-
normal state.
A final exemplar, invoked by the other aggregation

rules, deals with formatting, namely, creating vertical
lists, spacing, etc.

The most frequent application of the aggregation
rules is to group parts according to the system module
they belong to, and within each module, to group re-
placeable units by how likely it is they may cause the
observed symptom.

The bottom part of Figure 2 shows our rules at work.
The revised output groups the parts under discussion
by the system modules that contain them (Oil Burner
and Furnace System), and by the likelihood that a cer-
tain RU causes the observed symptoms. Note how the
Ignitor Assemblyis singled out in the revised answer.
Among all mentioned units, it is the only one that can-
not cause the symptom. This fact is just lost in the orig-

3



Figure 2: Original (top) and revised (bottom) answers provided by DIAG to the sameConsult Indicatorquery

4



inal answer.
In this version ofDIAG-NLP, morphology, lexical re-

alization and referring expression generation were all
treated ad hoc, i.e., they were directly encoded in the
appropriate exemplars.

Experiments
Intuitively, the contrast between the feedback produced
by DIAG-orig and byDIAG-NLP (top and bottom in
Figure 2) suggests that even simple aggregation rules
dramatically improve the language feedback. To pro-
vide a real assessment of this claim, we conducted
an empirical evaluation designed as a between-subject
study. Both groups interact with the same DIAG appli-
cation that teaches them to troubleshoot a home-heating
system. One group interacts withDIAG-orig and the
other withDIAG-NLP.

Seventeen subjects were tested in each group. Our
subject pool comprised 13 undergraduates, 18 gradu-
ates, and 3 research staff, all affiliated with our univer-
sity. Participation in the experiment was restricted to
science or engineering majors. Each subject first reads
some short material about home heating that we devel-
oped. Afterwards, each subject goes through the first
problem as a trial run. Each subject then continues
through the curriculum on his/her own. The curricu-
lum consists of three problems of increasing difficulty.
Subjects are encouraged to interact with DIAG as much
as possible. At the end of the experiment, each subject
is administered a questionnaire.

Metrics. A detailed log is collected while the subject
solves problems, and includes how many problems the
subject solved, and, for each problem: total time, and
time spent reading feedback; how many and which in-
dicators and RUs the subject consults DIAG about; how
many, and which RUs the subject replaced.

Questionnaire. The questionnaire is divided into
three parts. The first part tests the subject’s understand-
ing of the domain. Because the questions asked are
fairly open ended, this part was scored as if grading an
essay.

The second part concerns the subjects’ recollection
of their actions, specifically, of the indicators they con-
sulted the system on and of the RUs they replaced. By
taking the log of the subject’s actions as the target, we
can compute the usual measures of precision and re-
call applied to the answers that the subject gives with
respect to the target. For each subject, we compute pre-
cision as the percentage of correct answers out of the
total number of answers the subject gave; whereas re-
call is the percentage of correct answers they gave with
respect to the log of their actions. We also compute the

DIAG-orig DIAG-NLP
Time 29.8’ 28.0’
Feedback Time 6.9’ 5.4’
Consultations 30.4 24.2
Indicator consultations 11.4 5.9
RU consultations 19.2 18.1
Parts replaced 3.85 3.33
Essay score 81/100 83/100

Table 1: Performance measures

DIAG-orig DIAG-NLP
Indicator Precision .33 .17
Indicator Recall .33 .27
Indicator F-measure .44 .29
RU Precision .74 .65
RU Recall .73 .63
RU F-measure .72 .63

Table 2: Precision / recall

F-measure,(�
2+1)PR
�2P+R , that smooths precision and recall

off, with � = 1.
The third part of the questionnaire asks the subject to

rate the system’s feedback along four dimensions on a
scale from 1 to 5 (see Table 3).

Results. Every student solved all the problems, but
differences emerge with respect to other measures. Ta-
bles 1, 2, 3 show the results for the cumulative measures
across the three problems (measures on individual prob-
lems show the same trends).

On the whole, Tables 1 and 3 show a cumulative ef-
fect in favor ofDIAG-NLP, whereas Table 2 does not.
Focusing first on Tables 1 and 3, differences on individ-
ual measures are not statistically significant; the mea-
sure that individually comes closest to statistical sig-
nificance isindicator consultations, which exhibits a
non-significant trend in the predicted direction (Mann-
Whitney test, U=98, p=0.11). However, we can com-
pute the cumulative effect that showsDIAG-NLP per-
forms better thanDIAG-orig with the following ap-
proach.

We consider only the independent measures (for ex-
ample, the total number of consultations in Table 1 is

DIAG-orig DIAG-NLP
Usefulness 4.35 4.47
Helped stay on right track 4.35 4.35
Not misleading 4.00 4.12
Conciseness 3.47 3.76
Average score 4.04 4.18

Table 3: Subjective rating of DIAG’s feedback
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DIAG-orig DIAG-NLP
Total Time

p

Indicator consultations
p

RU consultations
p

Parts replaced
p

Essay score
p

Usefulness
p

Helped stay on right track
p

Not misleading
p

Conciseness
p

Table 4: Successes forDIAG-orig andDIAG-NLP

clearly not independent from indicator and RU’s con-
sultations, given it is the sum of these two measures).
For each measure, we decide whether its value indicates
a “success” forDIAG-NLP. We are not looking at the
magnitude of the difference between the two values of
the measure, but simply at the fact that the values differ.
For example, we consider the lower number of indica-
tor consultations inDIAG-NLPas evidence in favor of
the effectiveness of the aggregated feedback: because
the feedback is better and highlights what is important
(such as that the Ignitor Assembly can never cause the
Visual Combustion check to ignite, see Figure 2), the
subjects can focus their troubleshooting without asking
as many questions of the system. Every measure in Ta-
ble 1 is in DIAG-NLP favor, and so is every measure
apart fromhelped stay on right trackin Table 3 (we con-
sider a tie as a success forDIAG-orig). We then ask the
question: what is the probability that them successes
for DIAG-NLP out of then independent measures are
simply due to chance? We can answer this question via
B(m � 1; n; 0:5), the binomial cumulative distribution
function throughm� 1 for sample sizen and probabil-
ity of success p=0.5: it gives us the probability that ofn
random trials, the number of successes will fall between
0 andm�1, inclusive. Thus,1�B(m�1; n; 0:5) gives
us the probability thatm or more successes out ofn are
due to chance.

As an example, consider Table 4, in which we com-
bine the independent measures from Tables 1 and 3
and note whether they represent a success forDIAG-
orig or DIAG-NLP. The probability of 8 successes out
of 9 measures is p = 0.020 (1 � B(7; 9; 0:5)). If we
leaveTotal Timeout because it may not be an indepen-
dent measure,2 the probability of 7 successes out of 8
is p = 0.035 (1 � B(6; 8; 0:5)). Finally, if instead of
using the four subjective measures we use their average
(which constitutes a success forDIAG-NLP), we obtain
p = 0.016, and if we eliminate time in this last case,
we obtain p = 0.031. To conclude, in whatever way we
combine these measures, we obtain evidence that the

2One could argue the time went down because of the
smaller number of consultations.

better scoresDIAG-NLPobtains, albeit individually not
statistically significant, cumulatively show thatDIAG-
NLP outperformsDIAG-orig.

However, we have not discussed Table 2 yet. This ta-
ble shows that subjects inDIAG-orig remember what
they did better than those inDIAG-NLP. The results
are very poor for both groups, especially for indicator
consultations; precision and recall are much higher for
RU replacement, as would be expected because there
are many more indicator consultations than RU replace-
ments. The measures concerning indicators achieve
or show trends towards statistical significance: indica-
tor precision and indicator F-measure are significant (t-
test, respectively 2.19, p = 0.04 and 2.51, p = 0.02),
and indicator recall is marginally significant (Mann-
Whitney, U = 93.5, p = 0.08). All in all, this is a
puzzling result, especially because subjects inDIAG-
orig consult the system on indicators almost twice as
many times as the subjects inDIAG-NLP, thus we
would expect them to have more problems remember-
ing what they did. Perhaps this result can be related
to some results from (Kintsch 1998), that show that
high-quality text does not necessarily lead to better per-
formance. Kintsch describes experiments (p. 314-
318) in which high-knowledge subjects performed bet-
ter on problem solving questions when presented with a
low-coherence, rather than with a high-coherence, text;
however, their recall of the text was better for the high-
coherence texts. Kintsch’s explanation is, informally,
that the high-coherence texts didn’t prod those subjects
to “work enough” on the text to integrate it properly
with their previous knowledge to construct an appro-
priate model, whereas the low-coherence text did. The
situation here is somewhat different, in that in fact our
subjects’ performance was better with the better texts,
and it is their recall of their actions (not of the text) that
is affected.

Finally, the reader may wonder what happens to the
cumulative effect that showsDIAG-NLP better than
DIAG-orig if we take into account the measures in Ta-
ble 2 as well. By adding to Table 4 two successes for
DIAG-orig,3 we compute the probability of obtaining
8 suceesses out of 11 measures by chance. We obtain
p = 0.113, which shows a non significant trend in the
predicted direction. However, recall that we are be-
ing conservative: for example, we countedhelp stay on
right track in favor ofDIAG-orig even if it is a tie; if we
count it in favor ofDIAG-NLP, p goes down to 0.033.

We refer the reader to (Di Eugenio & Trolio 2000)
for further statistical analysis of individual measures.

3Given their definitions, precision and recall cannot be
considered as really independent measures, and certainly the
F-measure that combines them is not independent from either
of them. So we synthesize Table 2 as two successes forDIAG-
orig, one for indicators, one for RU’s.
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Current and future work
The results of the study we just discussed make us con-
fident that it is not necessary to add a full fledged NL
generator to an existing ITS to obtain reasonable re-
sults. This is not to say that the tutoring strategy the
ITS uses to start with cannot be improved, however, this
shows that better language can be added at a relatively
low cost (the implementation took one graduate student
six months), and that it can be effective.

As a consequence, we are now pursuing two lines of
research. The first is to add some more sophisticated
NL techniques without plunging into full text planning,
because we want to see how far the weak approach can
go. Second, we are conducting a constrained data col-
lection to help us discover some empirical foundations
on which to base the realization of the facts the ITS in-
tends to communicate.

We now discuss both efforts more in detail.

Focusing and rhetorical relations
In the work done so far, we imposed coherence on the
tutor turn by means of aggregation rules. However, the
turn could be made more coherent by introducing ap-
propriate referential expressions (generated ad hoc so
far), and the minimum amount of text planning needed
to express a few domain or rhetorical relations among
the facts to be expressed. For example, the fact that the
ignitor assembly never causes the abnormal indication
mentioned in Figure 2 as opposed to the fact that the
other parts within the oil burner always cause it, could
be given more prominence if the relevant propositions
were linked by acontrastrelation4 rendered via an ap-
propriate cue phrase, such asbut ((A) and (B) are used
later to refer to the appropriate part of the explanation):

(1) The visual combustion check indicator is igniting
which is abnormal in startup mode. Normal in this
mode is combusting.
(A) Within the oil burner, the oil nozzle, oil supply
valve, oil pump, oil filter and burner motor always
produce this abnormal indication when they fail. (B)
But the ignitor assembly never does.
We have started some work in this direction, in which

we have coupled EXEMPLARS to a knowledge base
built via the SNePS representation system (Shapiro &
Rapaport 1992). SNePS is a semantic network formal-
ism where each node represents a proposition. In gen-
eral, it is very difficult to access the knowledge about
the physical structure of the system and causal relation-
ships in VIVIDS-based tutors. These types of knowl-
edge are often only indirectly present: they are reflected
in how changes to graphical objects affect other ob-
jects, but this is not sufficient to generate language.

4We are using relations from Rhetorical Structure Theory
(Mann & Thompson 1988).

When they are present, they are expressed in a very non-
symbolic way. So, in a sense we need to extract some of
this knowledge from the existing tutor and represent it
in a usable form for the NL generator — this was done
in DIAG-NLP by representing the required knowledge
via Java classes (EXEMPLARS is written in Java).

Using SNePS has the advantage that it makes it very
easy to represent and reason about entire propositions,
not just about objects. For example, it is straightforward
to represent the various individual propositions that un-
derlie Ex. 1 above, and the causal relations between the
failure of the individual parts and the abnormal state of
the visual combustion check. Moreover, it is also easy
to represent the contrast relation between the two com-
plex propositions (A) and (B). Finally, because proposi-
tions are full fledged entities in the representation, they
can become part of the discourse model, and be referred
to with appropriate referential expressions. In this ver-
sion of the generator, we implemented the GNOME al-
gorithm to generate referential expressions (Kibble &
Power 2000), which is a simple algorithm that uses in-
sights from centering (Grosz, Joshi, & Weinstein 1995)
and from theories of salience.

This revised version of the generator renders the
same facts underlying Figure 2 as shown in in Figure 3.

In Figure 3, the deicticThis is generated by the
GNOME algorithm and is used to refer to the proposi-
tion representing the abnormal state of the visual com-
bustion check indicator; this cuts down on some of the
repetitiveness of the feedback generated byDiag-orig
and also byDIAG-NLP, see Figure 2. However, the in-
definite articles introduced in Figure 3 are incorrect (the
algorithm we implemented does not take into account
the visual context, or the fact that there is only one part
with that description). The contrastive particlebut is
not included in Figure 2 because we have not yet im-
plemented exemplars to generate cue phrases; however,
as soon as we do so, it will be very easy to generate it,
as the appropriate rhetorical relation is included in the
SNePS representation of the message to be conveyed.

Further, in order to improve our surface realization
capabilities, we are planning to use a different ver-
sion of EXEMPLARS which is integrated withRealPro
(Lavoie & Rambow 1997), a surface realizer developed
at CogenTex like EXEMPLARS.

First observations of human consulting
The aggregation rules we implemented in EXEM-
PLARS appear to be plausible, but they have no em-
pirical foundation. To understand how a human tutor
may verbalize a collection of facts, we are collecting tu-
toring dialogues between a student interacting with the
same DIAG application we have previously discussed
and a human tutor. In this experiment the tutor and the
student are in different rooms, sharing images of the
same DIAG tutoring screen. When the student exer-
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A visual combustion check indicator is igniting in startup mode.
The visual combustion check indicator igniting in startup mode is abnormal.
Within the furnace system,
This is sometimes caused when a system control module replaceable unit is inoperative.
Within the oil burner,
This is never caused when an ignitor assembly replaceable unit is inoperative.
This is sometimes caused when a burner motor, oil filter, oil supply valve, or oil
nozzle is inoperative.

Figure 3: Adding a bit more of sophistication to the generator

cises the consult function the tutor sees the information
that DIAG would use in generating its advice — ex-
actly the same information that DIAG gives to EXEM-
PLARS inDIAG-NLP. The tutor then types a response
that substitutes for DIAG’s response. Although we can-
not constrain the tutor to provide feedback that includes
all and only the facts that DIAG would have communi-
cated at that specific moment, we can still see the ef-
fects of how the tutor uses the information provided by
DIAG. As of this writing, we have preliminary obser-
vations of two human tutors, consisting of 45 human
responses to DIAG consult requests.

The most striking pattern we observe in the human-
generated advice is that the humans eschew syntactic
aggregation of part lists and instead describe or name
functional aggregations of parts. Our tutors write like
this:

1. Referring to oil nozzle, supply valve, pump, filter,
etc:

1a) “. . . check the other items on the fuel line” [Tutor
1]

1b) “. . . follow the path of the oil flow” [Tutor 2]

2. Referring to all the burner parts:

2a) “What are the parts that control the combus-
tion?” [Tutor 1]

2b) “. . . consider the units that are involvedwith
heating the water” [Tutor 2]

3. Referring to the photocell that senses the presence of
flames:

3a) “Check the electronics that indicates that there is
combustion” [Tutor1]

3b) “Consider the sensors that tell the SCM to turn
the burner motor off” [Tutor 2]

In these examples, the pairs of utterances show the two
tutors independently describing the same assemblages
of parts.

It is not clear to us to whether these assemblages
of parts are fixed in content, or whether they are con-
structed according to the evolving discourse context. In
general it seems to be a fixed collection. But the tutor
sometimes constructs an impromptu subset, as in “the
valve is open, so you have to check the point below the

filter” which appears to be an impromptu reference to
parts in the fuel line “below” the filter.

The assemblages we see in the human discourse are
not necessarily represented in the training documenta-
tion or the functional diagrams on the DIAG screen; it
appears the tutors are constructing them.

Some of the other phenomena we have observed:

� In contrast to DIAG, neither tutor ever mentions parts
thatcannotbe causing the problem (e.g., the ignitor
assembly in Figure 2), except when the student con-
sults precisely on those parts.

� One tutor frequently introduces devices for inter-turn
coherence. For example, two adjacent turns were in-
troduced by “not a good choice” and “better choice,”
respectively. Another turn was introduced by “the
question is now,” indicating the reasoning was in
some way following from the previous turn.

� The human tutors occasionally justify a statement,
frequently by appealing to causal reasoning. For ex-
ample, one tutor wrote “The oil filter is normally
clean. A dirty and clogged oil filterblocks the flow
of oil and should be replaced” (emphasis added). By
contrast, DIAG merely states whether a broken oil
filter can cause the problem, without interpolated ex-
planation.

As our experiments with human tutors continue, we
should be able to produce a more complete catalog of
language and discourse phenomena. Of particular inter-
est, given our emphasis on aggregation, is the parts as-
semblages the tutors use, especially their content, how
they are described, when they are invoked, and how to
organize the knowledge the tutor needs in order to imi-
tate the human tutors’ behavior.
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