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Abstract. We developed a new model for iList, our system that helps students learn
linked list. The model is automatically extracted from past student data, and allows
iList to track students’ problem-solving behavior in order to provide targeted feed-
back. We evaluated the new model both intrinsically and extrinsically. We show
that the model can match most student actions after a relatively small sequence of
observations, and that iList can effectively use the new student tracker to provide
feedback and help students learn.
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Introduction

In this paper, we address the problem of automatic generation of models that Intelligent
Tutoring Systems (ITSs) can use to provide feedback to students. An important charac-
teristic of ITSs is their ability to adapt their instruction to the needs of individual students
[15]. In order to do so, the system needs to incorporate computational models of domain
knowledge and student knowledge. A traditional and successful approach is model trac-
ing, based on the ACT cognitive theory [1]. A model tracing system explicitly incorpo-
rates “expert rules,” that encode the possible correct steps to solve a problem; “buggy
rules,” that model the most common student errors; and a mechanism to trace student
actions during the solution of a problem according to the mentioned sets of rules. Effec-
tive feedback can be generated from these rules, because the rules are closely related to
relevant cognitive processes and important features of the subject domain. An alternative
approach to model tracing is constraint-based modeling [11]. In this paradigm, domain
knowledge is encoded as a set of constraints that, depending on the context of the stu-
dent solution, can be irrelevant, satisfied, or violated. Constraint-based tutors can give
effective feedback in response to student mistakes.
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Figure 1. Screenshot of iList

With both approaches, a significant amount of manual knowledge engineering work
is required. There are authoring tools for both model tracing and constraint-based tutor-
ing [4,10], but these tools do not yet fully automatize the knowledge acquisition pro-
cess. Promising steps towards that goal have been taken [16], but we are still far from
a practical, completely automatic knowledge acquisition. Researchers in the new field
of Educational Data Mining are extracting information from past student data [9,12,14].
Particularly relevant to our work is the work of Barnes and Stamper [2,3], who automati-
cally extracted Markov Decision Processes from past student interactions with their logic
proof tutor. Among the differences between our work and theirs, we mention the absence
of an explicit reward function in our model; the representation of states, which are “vir-
tual machine snapshots” in our system and sequences of steps in Barnes and Stamper’s;
and the way we use our model to generate feedback.

This work takes place in the context of the iList project, a system that helps students
learn linked lists, a difficult topic in computer science undergraduate curricula [8,7,6]. In
previous work, we proved that our system is successful in helping students learn, and we
showed that more sophisticated feedback can help improve the effectiveness of the sys-
tem. Here, we introduce a model that is automatically extracted from past student inter-
actions with iList; we describe how iList uses the model to generate additional feedback;
and we evaluate the system in two ways, analyzing the learning curve of the model, and
assessing the learning outcomes of students working with our system.

1. Description of iList

The iList system provides the student with a simulated environment where linked lists
can be seen and manipulated. Lists are represented graphically, and can be manipulated
with programming language commands. Students are asked by the system to solve prob-
lems in this environment, such as insert new nodes in a given linked list, remove nodes, or
perform other more complicated operations. As a student is working towards a solution,
the system provides feedback to help the student make progress.

The graphical interface of iList is divided in four main parts: an area containing the
description of the problem to be solved; an area reporting the history of the feedback



messages given to the student; an area representing the current state of the linked list vir-
tual machine; and an area in which students can enter commands and see a history of the
previously executed operations (Figure 1). Using this interface, students can interactively
manipulate the data structures using C++ or Java commands.

In previous work [8,7], we reported on two versions of iList, capable of delivering
feedback of increasing complexity, in three main circumstances.

1. The student entered a command that iList could not understand (syntax feedback).

2. The student entered a command and iList understood it, but the command could
not be executed because of the contingent state of the virtual machine (execution
feedback). For example, the student might have tried to access a variable that had
never been declared, or tried to reference a node that did not exist.

3. The student explicitly asked for his/her solution to be evaluated by pressing the
“submit” button on the user interface (final feedback).

The main difference between the first version (iList-1) and the second (iList-2) is the
sophistication of syntax feedback and execution feedback. The provided messages are
different in the two versions, but they are given exactly in the same circumstances.

A limitation of iList-1 and iList-2 is that the systems are not able to evaluate the
“semantic” qualities of a student solution before the end. In the new version of iList
(iList-3) we wanted to provide semantic feedback while the student is working on a
problem. Inspired by cognitive theories and by our empirical study of human tutoring
[8,6], we envision two important strategies: reactive feedback and proactive feedback.
We address the generation of reactive feedback in the following two sections, and we
briefly mention our plan for generating proactive feedback in the “current work™ section.

2. Reactive Feedback Generation

In a tutoring context, reactive feedback is given in response to student actions that were
not explicitly prompted by the tutor. In an exploratory environment like iList, this is the
dominant case, as students are working on solving problems on their own. With our new
strategy, iList evaluates a student’s move on two main factors: the goodness of a student
move and the level of uncertainty of the student in making that move. Both factors can be
quantitatively estimated from our model, as we will explain in the following section. The
goodness of a move is directly related to the probability that a student will eventually
reach a correct solution, starting from the current state of his/her solution. Student’s
uncertainty is estimated by monitoring the time taken by the student to make the move,
and the student’s “undo behavior.” If the time taken by the student is more than a standard
deviation greater than the average time spent by past students at that same point, plus
a correction factor based on a student’s personal history, then the student is considered
uncertain. Also, if the student performed an “undo,” “redo,” or “restart” operation at that
point in the past, he/she is considered uncertain there.

More specifically, the feedback generation algorithm works as follows. If the stu-
dent just got into a “hopeless” state, i.e., a state from which the estimated probability of
success is zero, then a negative feedback message is generated, to help the student get
unstuck. If the student has made a good move, i.e., has improved his/her probability of
reaching a correct solution, and the student showed uncertainty, then a positive feedback



message is provided. The rationale is that a student could have performed a correct but
tentative move. In this situation, positive feedback can help consolidate correct knowl-
edge that the student has not fully acquired yet. Moreover, it has been recently shown
that human tutors may regulate their feedback according to student uncertainty [5].

The new reactive feedback has two main components. The first part is a content-free
sentence expressing the goodness of the student’s move, such as “Mmmbhh... Probably
you can’t go very far from here” (negative feedback) and “Good move!” (positive feed-
back). This is followed by a summarization of the effects of that move on the problem
state space, for example “Node 2 was pointing to node 1, now it points to node 3. Node 1
was being targeted by node 2 but now it is abandoned.” This explanation is dynamically
generated comparing the previous state with the current state, then reporting the differ-
ences between those states. The facts to be communicated are chosen using a set of rules.
Finally, the surface realization is performed using the SimpleNLG library [13].

3. The New Student Tracking Model

In order to generate the feedback explained in the previous section, we need a model that
is able to assess the goodness of a state and that can support the determination of student
uncertainty. Traditional model tracing techniques would allow us to do that. However, we
wanted to avoid the expensive, time consuming, and rigid process of manually encode
procedural models for each problem in our system. A more fundamental reason is that
problems in the linked list domain allow a great degree of flexibility, and many different
paths can lead to a successful solution. Anticipating all the possible correct and incorrect
paths and manually encoding them into the system would be almost impossible. So, we
decided to use a machine learning approach to automatically generate a useful model
from the past interactions of students with iList.

The core of our model is a probabilistic graph equivalent to a Markov Chain. Its
main components are states and actions. A state is a snapshot of iList’s virtual machine,
which includes the simulated linked lists. Linked lists in iList are internally represented
with graphs. This representation allows the flexibility of modeling unusual or inconsis-
tent linked list configurations, which can happen as a result of student exploratory ac-
tions. Actions in iList are first-class objects, which are created by the students from C++
or Java-like commands. Actions can modify a state into a different one. The model is
represented with a simple directed graph with two types of vertices, state vertices and
action vertices, and the constraint that a state vertex can point only to action vertices,
and that an action vertex must point to exactly one state vertex. The set of actions in the
graph is associated with a probability mass function. So, each action is associated with
the probability that a student will take that action. Figure 2 shows an example of graph for
problem 1, generated from only one student session for reading clarity. “Undo,” “redo,”
and “restart” operations are not represented in this graph.

The algorithm to build the graph works as follows. First, iList scans and executes
the student actions recorded in past log files. For each action, a new state is generated.
If the new state can be matched to a state already present in the graph, the frequency of
the pre-existing state is updated; otherwise, the new state is added to the graph. A similar
procedure is performed for actions. Then, iList checks if a newly added state is a correct
solution for the current problem. In that case, the state is connected to a special “success”
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Figure 2. Example of generated graph. The thickness of the border is proportional to the g value

node. Each state gets also annotated with statistics about the time students took to exit
from that state. This information is used by iList to assess student uncertainty. Individual
students’ histories are recorded into separate structures, together with sets of mappings
that establish a correspondence between the “real” states in iList and the matched states
in the graph, as well as “real” actions and matched actions. The matching process for
states and actions is not trivial. We wanted iList to be able to match semantically equiv-
alent state spaces. A state space in iList is also represented with a properly annotated
graph. Matching is performed by looking for isomorphism relations between two states.
If more than one isomorphism relation is found, iList looks back at the matching history
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Figure 3. Learning curve of the student tracker model (X = session; Y = match rate)

to disambiguate and choose the appropriate one, which is used as mapping function. Fi-
nally, after the construction of the graph is completed, the entire graph is traversed and
two important quantities are computed. The frequencies associated to states and actions
are converted into probabilities using maximum likelihood estimation. These probabil-
ities are stored in the edges of the graph. Then, iList computes a “goodness” value (g)
for each state of the graph. The g value represents a lower bound on the probability that
a student traversing that state will eventually reach a correct solution. It is calculated by
summing the probabilities of the k£ most likely paths (with k£ empirically set to 10) from
the current state to the special “success” node to which all the correct states are linked.

At run-time, when a new student comes in, his/her actions are matched against the
graph. The comparison between the student’s behavior and the model allows iList to
make inferences and generate feedback, using the strategy explained in the previous sec-
tion. Other strategies are possible, as we propose in the “current work™ section.

4. Evaluation

We evaluated the new student tracker model in two ways: intrinsically, by assessing the
learning curve of the model itself; and extrinsically, by evaluating the learning gain of
students working with a version of iList that uses the new model to generate feedback.

Learning curve of the model. For the model to be useful in practice, it is important that
a high percentage of the actions of new students can be matched with the model. The
main hypothesis behind the model is that even though the state space of the graph is
potentially infinite, only a relatively small number of states can represent most student
actions. We calculated the learning curve of our models by training them incrementally
and counting the percentage of matched states as each session is added to the model.
We repeated the procedure 10000 times, randomly shuffling the dataset each time, and
averaged the resulting curves. Figure 3 shows the learning curves for the fastest-learned
problem (problem 1) and the slowest-learned one (problem 4). In these experiments,
the maximum standard error of the mean is less than 0.003, which is too small to be
plotted on the figure. Notice that the models can be learned quickly. For problem 1, the
80% match level is reached after just 4 training sessions; the 85% match level after 14
session; and more than 90% of the states can be matched after 40 sessions. For problem
4, the learning rate is slower, with the 80% match level reached after 52 training sessions.



Table 1. Test scores (range: 0 to 1)

Pre-test score | Post-test score Gain

Mean Std Mean Std Mean | Std
None 53 .34 22 35 23 .01 15
iList-1 | 61 41 23 .49 27 .08 .14

Tutor N

iList-2 | 56 31 17 41 23 .10 17
iList-3 | 19 .53 29 .65 .26 12 24
Human | 54 40 .26 .54 .26 .14 25

Notice that the line of problem 4 is shorter, because fewer students worked on problem 4
in our past iList trials. We believe that the steepness of the learning curve depends on the
complexity of a problem. On easier problems, students make less “creative” moves than
they do on more difficult ones. This leads to more predictable actions and consequently
a faster learning of the model.

Learning gain of students. We ran a five-way comparison that included the three ver-
sions of iList, a group of students that worked with human tutors, and a control group of
students that did an unrelated activity between pre and post-test. The new probabilistic
model discussed in this paper is used in iList-3. For more details on testing procedures,
human tutors, and control group, see [8,6]. Size of each group, pre-test scores, post-test
scores, and learning gains (post-test minus pre-test) are reported in Table 1. ANOVA
revealed an overall significant difference across the five groups (F'(4,238) = 3.70,
P < 0.01). Tukey post-hoc test showed only a significant difference between the control
group and the human group (P < 0.01), and a marginally significant difference between
the control group and iList-2 (P < 0.1). The difference between iList-3 and the other
two versions of iList is not significant, but the progression of P values indicates that the
performance of iList-3 is even less distinguishable from human tutors than that of iList-1
and iList-2 (Human vs. iList-1: P = 0.451; Human vs. iList-2: P = 0.738; Human vs.
iList-3: P = 0.996). Although this is not strong evidence that that iList-3 is better than
iList-1 and iList-2, this result is encouraging. Overall, the performance of iList is very
respectable compared to that of our human tutors. So far, we tested iList-3 in a relatively
small class, and the group of students that worked with iList-3 is much smaller than the
other groups. We are planning to run additional experiments with iList-3 in the future.

5. Conclusions and Current Work

We introduced an effective model that automatically learns a useful probabilistic knowl-
edge representation to enhance the feedback capabilities of iList. Our evaluation showed
that the model can be learned with a relatively small dataset, and that students can benefit
from the additional feedback messages that can be generated.

Our current work has two main directions. On the one hand, we want to evaluate
the performance of the system more thoroughly with more students. In addition to im-
proving the statistical confidence of the results, more interactional data would allow us
to discover features of the system that are responsible for the most learning, consistently
with the broader goals of our project [8,6]. In particular, we would like to test the impact
of positive feedback in iList, and iList-3 is indeed the first version of iList able to deliver
a large amount of positive feedback. On the other hand, inspired by our study of human



tutoring [8], we are implementing a new tutorial strategy which we call proactive feed-
back. In this kind of interactional episodes, iList will engage students with pedagogically
motivated questions, with the goal of guiding them towards a good path. The students
will answer the questions, then the tutor will deliver appropriate feedback. The student
tracker model described in this paper will provide the context for this type of interaction.
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