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Abstract. This paper presents the first experiments with an Intelligent
Tutoring System in the domain of linked lists, a fundamental topic in
Computer Science. The system has been deployed in an introductory
college-level Computer Science class, and engendered significant learning
gains. A constraint-based approach has been adopted in the design and
implementation of the system. We describe the system architecture, its
current functionalities, and the future directions of its development.

1 Introduction

In this paper, we present the first version of iList, an Intelligent Tutoring System
(ITS) in the domain of basic data structures and algorithms in Computer Science
(CS), and its evaluation. Among the innovative features of our work are: the
domain itself, and specifically, our focus on linked lists, due to pedagogical tenets
for CS; the choice of constraint-based modeling as the basis for our ITS; and the
structure of our graphical interface, itself partly due to the pedagogy of CS. This
work is situated within our larger research program, whose main goal is, similarly
to others [1–4], to better understand why human tutoring is effective, and to
discover computational models of effective tutoring that can be implemented in
ITSs. We are developing a second version of the ITS we present here, based on
our data collection and analysis in this CS domain.

Computer Science as a Domain. In recent years, interest in CS among col-
lege students in the US has dropped dramatically. However, CS and Information
Technology are of enormous strategic interest, and are projected to foster vast
job growth in the next few years [5]. We believe that by supporting CS education
in its core we can have the largest impact on reversing the trend of students’
disinterest, and on attracting women and minorities. Our belief is grounded
in the observation that the rate of attrition is highest at the earliest phases
of undergraduate CS curricula. This is due in part to students’ difficulty with
mastering basic concepts [6], which require a deep understanding of static struc-
tures and the dynamic procedures used to manipulate them [7]. These concepts
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require a high level of abstraction, and the ability to move seamlessly among
multiple representations, such as text, pictures, pseudo-code, and real code in
a specific programming language. Thus, we believe that the availability of an
ITS for basic CS would be of great benefit to both teachers and students. Such
an ITS does not exist yet. This is surprising, since CS education is an area of
active research, and ITSs are obviously software systems. Although ITSs on CS
topics do exist, to our knowledge, only two of them tutor on the foundations.
ADIS [8] tutors on basic data structures, but its emphasis is on visualization,
and it appears to have been more of a proof of concept than a working system.
ProPL [9] helps novices design their programs, by stressing problem solving and
design skills. The other ITSs for CS focus on a diverse range of topics, from
basic literacy as in AutoTutor [10], to teaching programming languages such as
Lisp [11], C++ [12], and Java [13], to topics such as search algorithms used in
Artificial Intelligence [14]. Of particular interest to us is the database suite of tu-
tors composed by SQL-Tutor, NORMIT, KERMIT, and EER-Tutor [15]. These
ITSs are built via constraint-based modeling, the same paradigm we chose for
the development of our system.

Constraint-Based Modeling. Our system is based on a design paradigm
known as constraint-based modeling. Originally developed from a cognitive the-
ory of how people might learn from performance errors [16, 17], constraint-based
modeling has grown into a methodology used to build full-fledged ITSs, and an
alternative to the model tracing approach adopted by many ITSs. In a constraint-
based system, domain knowledge is modeled with a set of constraints, logic units
composed of a relevance condition and a satisfaction condition. A constraint is
irrelevant when the relevance condition is not satisfied; it is satisfied when both
relevance and satisfaction conditions are satisfied; it is violated when the rele-
vance condition is satisfied but the satisfaction condition is not.

In the context of tutoring, constraints are matched against student solu-
tions. Satisfied constraints correspond to knowledge that students have acquired,
whereas violated constraints correspond to gaps or incorrect knowledge. An im-
portant feature is that there is no need for an explicit model of students’ mistakes,
as opposed to buggy rules in model tracing. Errors are implicitly specified as the
possible ways in which constraints can be violated. This property simplifies the
difficult and time consuming task of knowledge modeling in an ITS.

There is currently a heated debate on whether constraint-based modeling
is more or less appropriate than model tracing for building ITSs [18–20]. The
application of the constraint-based paradigm to a new domain can contribute to
a better understanding of this issue.

Empirical Grounding. Our goal is not just to develop an ITS for CS, but to
endow it with a dialogue interface that can provide more sophisticated feedback,
that can help improve students’ learning [21, 22]. To accomplish this goal, we are
conducting an extensive tutoring dialogue collection in the data structures do-
main. We already collected 54 tutoring sessions, transcribed the video-recordings,
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and started annotating them. More details on our data collection and prelimi-
nary analysis can be found in [23, 24]. The findings of future data analysis will
guide further development of our system. The ITS we describe in this paper is in
fact a baseline to which we will compare the more sophisticated and empirically
grounded versions that will follow. We now describe the specific sub-domain of
our research, the basic ITS we have developed so far, and its first evaluation.

2 Linked Lists

A linked list is a data structure used to store information sequentially. It is
composed of a set of nodes. Each node contains two pieces of information: a value,
representing the data we are interested in storing, and a link to the following
node of the list. Links between nodes are realized using pointers, that are explicit
references to the memory locations where the nodes are stored. A graphical
representation of a linked list can be seen in Figure 1.

Among numerous different data structures, linked lists play a very important
role in the pedagogy of basic Computer Science, making them a particularly
good topic for our research. Linked lists are usually presented early in Computer
Science curricula; as such, more students see this topic. According to our expe-
rience on teaching data structures in classroom, students struggle with linked
lists more than with other —sometimes more complex— data structures, such as
stacks and binary search trees. The fundamental concepts of linked structures,
pointer manipulations, object allocation, and traversals, which students learn in
the context of linked lists, are all necessary for more complicated data struc-
tures, such as trees. Linked lists are important because students can learn these
concepts in a relatively simple context, and they should not cause additional
cognitive overhead when students are trying to understand more complicated
structures. Part of what students learn while they struggle with linked lists is
to think about an abstract visual model of their data, and to think of steps in
a program/algorithm as making changes to that model. Mastering that way of
thinking is a huge step for students, and one that they need to make to continue
successfully in Computer Science.

In the linked list domain, there are several structural properties that a solu-
tion should have in order to be correct. For example, a list should contain the
correct values, as specified in the description of each problem; lists should be
free of cycles; lists should not terminate with undefined or incorrect pointers; no
nodes should be made unreachable from any of the variables, i.e., lost in the heap
space; nodes should be correctly deleted when necessary (this applies specifically
to non-garbage collected languages, like C++). Having these properties in form
of constraints allows our system to catch many common mistakes students make.

3 The iList System

The iList system works by providing a student with a simulated environment
where linked lists can be seen and manipulated. Lists are represented graphi-
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cally, and can be manipulated with programming language commands. Students
are then asked by the system to solve problems in this environment, such as
insert new nodes in a given linked list, remove nodes, or perform other more
complicated operations. As a student is working towards a solution, the system
can provide feedback to help the student make progress.

A key difficulty about linked lists, as well as with other more sophisticated
data structures, is that to really understand and use them effectively, students
must think in pictures but act in code. The issue of multiple representations is
subject of active research in science education [25–27]. In traditional data struc-
tures books, linked lists are illustrated with pictures, and it is sometimes difficult
to connect that static representation with the dynamic procedures necessary to
manipulate the structure itself. That is in fact what iList addresses. It makes
the pictorial representation concrete. In a certain sense, the system reifies that
conceptual image and makes it more accessible to the students. The central idea
is that iList’s interface is not just a box for entering input, but a dynamic visual
environment that connects code actions to their effects on machine state.

Problem Types. The iList system supports two types of problems. The first
kind of problems can be solved interactively, step-by-step. Students can enter
a command into the system, and the system simulates the effect of that com-
mand, showing the effect of the action immediately on the simulated scenario.
The second type of problems require writing a complete snippet of code, possi-
bly involving structured conditional constructs like loops. Problems of this type
usually introduce more than one initial scenario, and ask the student to write
code that should work correctly in all the given scenarios. This setting forces
the student to abstract away the specific details of a scenario, and think about
more general algorithms for solving the problem on a wider range of situations.

The curriculum included in iList is currently composed of 7 problems, 5
of them of the first type, 2 of them of the second type. These problems have
been carefully crafted based on some of the authors’ experience as computer
science educators, and on published CS curricula, such as ACM [7]. The goal
is to challenge the students with the most common difficulties in manipulating
linked lists. The problems are defined in the system using a human-readable
XML format, making it easy to add new problems as needed.

Architecture. The architecture of iList is currently composed of four important
modules: problem model, constraint evaluator, feedback manager, and graphical
user interface. A student model and a pedagogical module, important compo-
nents of a complete ITS [28], have not been implemented yet. Thus, the current
version of iList is better defined as an interactive learning environment, rather
than an ITS.

The problem model includes the representation of the problems presented to
the student. A problem is given to the student in the form of a textual description
and an initial scenario, which includes a configuration of variables and nodes
(state space). The student is asked to progressively modify the state space by
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interactively providing a sequence of operations, until the desired configuration
of the data structure has been reached.

When the student believes he/she is done with the current problem, the cur-
rent state space is submitted to the constraint evaluator, that checks the given
solution. According to the constraint-based modeling paradigm, a solution is
correct if it does not violate any constraint. Computationally, the evaluation of
constraints is fairly simple. Each constraint is implemented as a computational
unit with three fundamental functions: a boolean function checking the rele-
vance of the constraint with respect to the solution, a boolean function checking
the satisfaction of the constraint, and a feedback function responsible to return
relevant information used to generate feedback for the student. A constraint is
violated if the logic implication isRelevant ⇒ isSatisfied is false for that particu-
lar state space. Constraints have access to two sources of information: the current
student solution, and a correct solution provided with the problem definition.
The specification of the correct solution needs only to include the minimum in-
formation necessary to evaluate a student solution, like the expected values of
final lists. This is indeed one of the advantages of the constraint-based approach:
the whole path towards a correct solution needs not to be specified in advance.
This simplifies problem authoring, and most importantly, it allows alternative
correct student solutions to be accepted by the system.

The feedback manager collects information from the individual constraints
and builds a message directed to the student. Currently, this module simply
relays messages provided by violated constraints, with minimum processing.

The graphical user interface is responsible for the main interaction with the
student (Figure 1). The interface allows the student to interactively manipulate
a data structure using C++ or Java commands. The command interpreter is
quite flexible, allowing the student to focus more on the semantics of statements
rather than language-dependent syntax details.

The system has been entirely implemented using the Java programming lan-
guage. An early version of the system was interfaced to the WETAS system
[29] for constraint evaluation. In subsequent versions, the constraint evaluator
was re-implemented internally. To the user, the system appears as an applet
integrated into a web page.

4 System Evaluation

A first version of the system has been deployed in a Computer Science class of
a partner institution. 33 students took a pre-test before using the system, and a
post-test immediately afterwards. After the post-test, the students also filled in a
questionnaire about their subjective impressions on the system. The interaction
of the students with the system was logged.

T-test on test scores revealed that students did learn during the interac-
tion with iList (Table 1). We compared students’ learning gain, defined as the
difference between post-test score and pre-test score, with that of two other
comparable groups of students. A group of 54 students interacted with a human
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Fig. 1. A screenshot of iList

tutor between the pre and post tests. The other group (control group, 53 stu-
dents) attended a lecture about a totally unrelated topic between the two tests.
The tutored group achieved statistically significant learning, whereas the control
group did not (Table 1).

Table 1. Test scores. Range: 0 to 1

Tutor
Pre-test score Post-test score Gain T-test
Mean Std dev Mean St dev Mean St dev t df P

None .34 .22 .35 .23 .01 .15 -0.56 52 ns

iList .39 .23 .48 .27 .09 .17 -3.04 32 < .01

Human .40 .26 .54 .26 .14 .25 -4.24 53 < .01

The learning gain of the iList group is somewhere in between the one observed
in the control condition and the one of the tutored condition. ANOVA revealed
overall differences between the three groups (F (2, 137) = 5.96, P < 0.05). Post
hoc Tukey test indicated no significant difference between the control group and
the iList group, nor between the iList group and the tutored group, whereas the
difference between control and tutored groups is significant (P < 0.01).

The percentage of students who successfully solved each problem decreases
with the problem number, as can be seen in Table 2. Problems were of increasing
difficulty. Linear regression of individual problem success on learning gain showed
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a positive correlation between the number of problems successfully solved and
learning. Also, we found significant positive correlation between solving the most
difficult problems (number 5, 6, and 7) and learning (Table 3).

Table 2. Attempt and success rates on individual problems

Problem 1 2 3 4 5 6 7

Attempt rate 100% 100% 94% 91% 77% 74% 80%

Success rate 91% 80% 74% 66% 57% 46% 31%

Table 3. Linear regression. Each line represents an independent model

Predictor Dependent variable R2 β df F t P

Number of problems solved Learning gain .17 .41 1, 32 6.31 2.51 < .05

Problem 5 solved (yes/no) Learning gain .12 .35 1, 32 4.25 2.06 < .05

Problem 6 solved (yes/no) Learning gain .16 .40 1, 32 5.80 2.41 < .05

Problem 7 solved (yes/no) Learning gain .13 .36 1, 32 4.63 2.15 < .05

Questionnaire question 1 Learning gain .22 .47 1, 31 8.33 2.89 < .01

Questionnaire question 4 Learning gain .16 -.40 1, 31 5.83 -2.42 < .05

Questionnaire question 5 Learning gain .37 .61 1, 31 17.72 4.21 < .01

Questionnaire question 6 Learning gain .12 .36 1, 31 4.32 2.08 < .05

Questionnaire question 7 Learning gain .35 -.59 1, 31 16.09 -4.01 < .01

Learning gain Final class grade .12 .36 1, 31 4.35 2.09 < .05

The first part of the questionnaire (Table 4) revealed that students felt that
iList helped them learn linked lists to a moderate degree, and working with
iList was interesting to them. The students found the feedback provided by the
system somewhat repetitive, which is not surprising given the simple template-
based generation mechanism. Also, the feedback was considered not very useful,
but at least not too misleading.

Linear regression of questionnaire answers on learning gain revealed some
significant correlations between students’ feelings about the system and their
learning (Table 3). The students who felt that iList helped them the most or
found the feedback useful did indeed learn the most (questions 1 and 5). Those
who had trouble understanding the feedback or found the feedback repetitive
learned less (questions 4 and 7). Strangely, the students who found the feedback
misleading learned more (question 6). A possible explanation may be that those
students were more careful and exercised more critical thinking, thus getting
more out of their interaction with the system.

Interestingly, students declared that they read the feedback provided by the
system, but our evidence points to the opposite conclusion. From the log of the
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Table 4. Questionnaire: scaled questions

Question (Scaled response: 1=No to 5=Yes) Mean Std dev

1. Do you feel that iList helped you learn about linked lists? 2.9 1.2

2. Do you feel that working with iList was interesting? 4.0 1.3

3. Did you read the verbal feedback the system provided? 4.3 1.0

4. Did you have any difficulty understanding the feedback? 3.0 1.5

5. Did you find the feedback useful? 2.3 1.2

6. Did you ever find the feedback misleading? 2.2 1.2

7. Did you find the feedback repetitive? 3.9 1.2

system, we estimated that students read feedback messages for 3.56 seconds on
average (stdev = 2.66 seconds), resulting in a reading rate of 532 words/minute
(stdev = 224 words/minute). According to Carver’s taxonomy [30], such speed
corresponds to the process of quickly skimming a text. According to the same
taxonomy, the activity of reading to learn would require a much lower rate, in
the order of 200 words/minute. Possibly, the repetitiveness of feedback messages
could have made the students ignore them [31].

The last item in the questionnaire was an open response question, asking the
students for any comments on the program. The detailed comments provided
by the students and the instructor of the class will be helpful in guiding further
improvements of the system.

Finally, linear regression revealed a positive correlation of the learning gain
obtained with iList with the students’ final grade in the data structure class
in which they used iList (Table 3). There is then a chance that the little bit of
knowledge that students acquired interacting with iList carried over to their final
exam, and hopefully will help them in their future career in Computer Science.

5 Future Work

We plan to significantly extend the functionalities of iList. We will design and
implement a student model, to keep track of students’ history and estimate
their state of knowledge exploiting the modeling power of the constraint-based
knowledge representation. Pedagogical strategies will be implemented, following
the results of our data analysis and those already published in the literature.

One of the research issues we are mostly interested in is the delivery of ef-
fective feedback to students. We plan to build a more sophisticated feedback
module, grounding its behavior in the outcome of the analysis of our tutorial
data, as well as in our past experience with the development of natural language
interfaces for ITSs [21, 22]. A preliminary analysis of our human tutorial dataset
suggested that positive feedback, i.e., reaction to correct student actions, may
play an important role in tutoring [23]. We are planning on investigating the
conditions and the modalities in which positive feedback is delivered by human
tutors, and build a computational model of positive feedback that will be imple-
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mented and evaluated in iList. Providing meaningful positive feedback in ITSs,
in particular in constraint-based ITSs, is still an open problem, and a system
like iList will be a useful testbed for researching that problem.

Acknowledgments. This work is supported by award N00014-07-1-0040 from
the Office of Naval Research, and additionally by awards ALT-0536968 and IIS-
0133123 from the National Science Foundation.

References

1. Evens, M., Michael, J.: One-on-one Tutoring by Humans and Machines. Mahwah,
NJ: Lawrence Erlbaum Associates (2006)

2. Graesser, A.C., Person, N.K., Magliano, J.P.: Collaborative dialogue patterns in
naturalistic one-to-one tutoring. Applied Cognitive Psychology 9 (1995) 1–28
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